3.13. cpforager.processing.add_filtered_acc
- cpforager.processing.add_filtered_acc(df, params)
Add to the dataframe the additional
ax_f
,ay_f
andaz_f
columns of the filtered triaxial accelerations.- Parameters:
df (pandas.DataFrame) – dataframe with
step_time
,ax
,ay
andaz
columns.params (dict) – parameters dictionary.
- Returns:
the dataframe with the additional
ax_f
,ay_f
andaz_f
columns of the filtered triaxial accelerations.- Return type:
pandas.DataFrame
- Accelerations can be filtered using :
a rolling average of the dynamical acceleration over a given time window.
a Butterworth high-pass filter.
Note
The required fields in the parameters dictionary are
filter_type
and according to this value, eitheracc_time_window
for rolling average orcutoff_f
andorder
for high-pass filtering.